On bicyclic graphs with maximal energy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bicyclic graphs with maximal revised Szeged index

e=uv∈E(nu(e)+n0(e)/2)(nv(e)+n0(e)/2), where nu(e) and nv(e) are, respectively, the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, and n0(e) is the number of vertices equidistant to u and v. Hansen used the AutoGraphiX and made the following conjecture about the revised Szeged index for a connected bicy...

متن کامل

Unicyclic graphs with maximal energy

Let G be a graph on n vertices and let λ1, λ2, . . . , λn be its eigenvalues. The energy of G is defined as E(G) = |λ1| + |λ2| + · · · + |λn|. For various classes of unicyclic graphs, the graphs with maximal energy are determined. Let P 6 n be obtained by connecting a vertex of the circuit C6 with a terminal vertex of the path Pn−6. For n 7, P 6 n has the maximal energy among all connected unic...

متن کامل

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

The Minimum Matching Energy of Bicyclic Graphs with given Girth

The matching energy of a graph was introduced by Gutman and Wagner in 2012 and defined as the sum of the absolute values of zeros of its matching polynomial. Let θ(r, s, t) be the graph obtained by fusing two triples of pendant vertices of three paths Pr+2, Ps+2 and Pt+2 to two vertices. The graph obtained by identifying the center of the star Sn−g with the degree 3 vertex u of θ(1, g−3, 1) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2007

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.06.022